- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hafiz, Malik (2)
-
Khalid, Malik (2)
-
Hafeez, A (1)
-
Hafeez, Azeem (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hafeez, A; Khalid, Malik; Hafiz, Malik (, AES Int. Conf. Audio Forensics 2019)Microphone identification addresses the challenge of identifying the microphone signature from the recorded signal. An audio recording system (consisting of microphone, A/D converter, codec, etc.) leaves its unique traces in the recorded signal. Microphone system can be modeled as a linear time invariant system. The impulse response of this system is convoluted with the audio signal which is recorded using “the” microphone. This paper makes an attempt to identify "the" microphone from the frequency response of the microphone. To estimate the frequency response of a microphone, we employ sine sweep method which is independent of speech characteristics. Sinusoidal signals of increasing frequencies are generated, and subsequently we record the audio of each frequency. Detailed evaluation of sine sweep method shows that the frequency response of each microphone is stable. A neural network based classifier is trained to identify the microphone from recorded signal. Results show that the proposed method achieves microphone identification having 100% accuracy.more » « less
An official website of the United States government

Full Text Available